Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
骨肉瘤是最常见的原发性骨癌,其标准治疗包括术前化疗,然后切除。化学疗法反应用于预测患者的预后和进一步治疗。坏死在切除标本上的组织学幻灯片通常评估了坏死比定义为坏死肿瘤与总体肿瘤之比。已知坏死比> = 90%的患者的预后更好。多个载玻片对坏死比的手动微观综述是半定量性的,并且可能具有观察者间和观察者间的变异性。我们提出了一种基于目标和可再现的深度学习方法,以估计坏死比,并从扫描的苏木精和曙红全幻灯片图像预测结果。我们以3134个WSI的速度收集了103例骨肉瘤病例,以训练我们的深度学习模型,验证坏死比评估并评估结果预测。我们训练了深层多磁化网络,以分割多个组织亚型,包括生存的肿瘤和像素级中的坏死肿瘤,并计算来自多个WSI的病例级坏死比。我们显示了通过分割模型估算的坏死比,高度与由专家手动评估的病理报告中的坏死比高度相关,其中IV级的平均绝对差异(100%),III(> = 90%)和II(> = 50%和<50%和< 90%)坏死反应分别为4.4%,4.5%和17.8%。我们成功地对患者进行了分层,以预测P = 10^-6的总生存率,而P = 0.012的无进展生存率。我们没有可变性的可重现方法使我们能够调整截止阈值,特别是用于模型和数据集的截止阈值,为OS的80%,PFS为60%。我们的研究表明,深度学习可以支持病理学家作为一种客观的工具,可以分析组织学中骨肉瘤,以评估治疗反应并预测患者结果。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译
本文介绍了学习迭代查询细化的元策略的设计代理的首先成功步骤。我们的方法使用机器读取来指导从聚合搜索结果中选择细化项。然后,使用简单但有效的搜索操作员能够赋予代理,以对查询和搜索结果发挥细粒度和透明控制。我们开发一种新颖的方式来发电综合搜索会话,它通过(自我)监督学习来利用基于变压器的语言模型的力量。我们还提出了一种强化学习代理,具有动态约束的动作,从划痕中了解互动搜索策略。我们使用传统的基于术语的BM25排名函数获得与最近神经方法相当的检索和回答质量性能。我们对搜索政策进行了深入的分析。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Edge computing is changing the face of many industries and services. Common edge computing models offload computing which is prone to security risks and privacy violation. However, advances in deep learning enabled Internet of Things (IoTs) to take decisions and run cognitive tasks locally. This research introduces a decentralized-control edge model where most computation and decisions are moved to the IoT level. The model aims at decreasing communication to the edge which in return enhances efficiency and decreases latency. The model also avoids data transfer which raises security and privacy risks. To examine the model, we developed SAFEMYRIDES, a scene-aware ridesharing monitoring system where smart phones are detecting violations at the runtime. Current real-time monitoring systems are costly and require continuous network connectivity. The system uses optimized deep learning that run locally on IoTs to detect violations in ridesharing and record violation incidences. The system would enhance safety and security in ridesharing without violating privacy.
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
The application of deep learning algorithms to financial data is difficult due to heavy non-stationarities which can lead to over-fitted models that underperform under regime changes. Using the Numerai tournament data set as a motivating example, we propose a machine learning pipeline for trading market-neutral stock portfolios based on tabular data which is robust under changes in market conditions. We evaluate various machine-learning models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineering, as the building blocks for the pipeline. We find that GBDT models with dropout display high performance, robustness and generalisability with relatively low complexity and reduced computational cost. We then show that online learning techniques can be used in post-prediction processing to enhance the results. In particular, dynamic feature neutralisation, an efficient procedure that requires no retraining of models and can be applied post-prediction to any machine learning model, improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demonstrate that the creation of model ensembles through dynamic model selection based on recent model performance leads to improved performance over baseline by improving the Sharpe and Calmar ratios. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility of results.
translated by 谷歌翻译
In this work, we address the problem of unsupervised moving object segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no ground truth annotations are involved. Deep learning-based state-of-the-art methods for LiDAR MOS strongly depend on annotated ground truth data, which is expensive to obtain and scarce in existence. To close this gap in the stationary setting, we propose a novel 4D LiDAR representation based on multivariate time series that relaxes the problem of unsupervised MOS to a time series clustering problem. More specifically, we propose modeling the change in occupancy of a voxel by a multivariate occupancy time series (MOTS), which captures spatio-temporal occupancy changes on the voxel level and its surrounding neighborhood. To perform unsupervised MOS, we train a neural network in a self-supervised manner to encode MOTS into voxel-level feature representations, which can be partitioned by a clustering algorithm into moving or stationary. Experiments on stationary scenes from the Raw KITTI dataset show that our fully unsupervised approach achieves performance that is comparable to that of supervised state-of-the-art approaches.
translated by 谷歌翻译
Automated text analysis has become a widely used tool in political science. In this research, we use a BERT model trained on German party manifestos to identify the individual parties' contribution to the coalition agreement of 2021.
translated by 谷歌翻译